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Periodically forced leaky integrate-and-fire model
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The discharge pattern of periodically forced leaky integrate-and-fire models is studied. While previous
analyses have been mainly concerned with the response of this model to sinusoidal stimulation, our results hold
for arbitrary periodic inputs. It is shown that, for any periodic input, the map representing the relation between
input phases at consecutive discharge times can be restricted to a piecewise continuous, orientation preserving
circle map. This implies tha) the rotation number is well defined and independent of the initial condition,
and(ii) in the same way as for sinusoidal forcing, other forms of periodic stimuli can evoke only one of four
types of response, namely, phase locking, quasiperiodic discharges, nonchaotic aperiodic firing, and termina-
tion of the discharge after a finite number of firings.
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The sinusoidally forced leaky integrate-and-fire modeldifferent rotation numbers for given parameter val(gs
(LIFM) has been the topic of numerous investigations as aotation number is defined as the average number of firings
means for understanding the behavior of excitable and pacger input cycle. While this is not possible when(t)
maker cell§1-4]. The temporal evolution of the membrane =A sin(Qt+6) [3], the issue remains unexplored for other

potential of this model is governed by classes of periodic forcing, in other words, there may exist
v v one or several periodic inputs that elicit firings with different
. rotation numbers.
—=——+u+ < . . . .
dt r P (O if V<%, The main purpose of the present work is to investigate

this issue. We show that for arbitrary periodic inputs the
V(tT)=V, if V()=S, (1)  rotation number does not depend on the initial condition. To
. . - this end, we use an approach that is different from tha8pf
whereV(t) is the membrane potentiah, the constant firing i, that, instead of using the explicit analytical expression of
threshold Vo (<Sp) the postdischarge resetting potential, he solutions of Eq(1), we focus on the geometrical prop-
the membrane time constant, the resting potential, and erties of this equation. This enables us to generalize the
I(t) the periodic input signal with periofi=27/€). Without  analysis of sinusoidally forced LIF’s not only to arbitrary
loss of generality we assume thf§l (t)dt=0. The LIFM  periodic inputs, but also to a wider class of systems. An

generates an action potential whenexceedsS,, which is jllustration of this latter point in a model for a mechanore-
described by an impulse. After thatis immediately resetto  ceptor neuron is given at the end of this paper.
V. The process is repeated subsequently. Our key argument hinges upon establishing that, for any

An important milestone in the analysis of the sinusoidallyarbitrary periodic forcing, the circle mapf, can always be
forced LIFM [i.e., I(t)=Asin(Qt+6)] was set by Keener restricted in such a way that it is piecewise continuous and
etal. [3]. These authors performed a careful study of theprientation preserving. This point results from two properties

response to this specific input and showed that the LIFM capf the following equation, which corresponds to E4j. with-
display one of four behaviors, and only these. That is, theut resetting:

model fires only transiently and remains quiescent hence-

forth, phase locks to the input, displays quasiperiodic dis-

charges, or generates a nonchaotic irregular firing, with the dx X

last form of response occurring only for a measure zero a:_;ﬁ/’ﬂ“'(t)- 4
range of forcing amplitudes and periods. In their analysis,

they utilized the firing map describing the relation between
consecutive firing times,—t,,.1=f(t,) [1] These two properties arf@1) if for s>s’ and somex,, we
_ have —Xo/7+u+1(v)>0 for all v in [s,s'], then
_ 1 nlT 0 M
f(ta) =FF(ty) +Sen"], 2) X(t,8,X0) <x(t,s8",%xg) for all t, wherex(t,s,xy) represents
A the value at timé of the solution of Eq(4) going throughx,
r . . . .
F(t)=e' ur—S+ sin Ot + o— @ at times, i.e., t—_>x(t,s,x0) satisfies Eq(4) with X(s,s,Xq)
(1) KT Vi+(Q7)? A ¢) @ =Xo; (P2 the differencex(t,s,xg) — x(t,s,Yo) tends mono-
tonically to zero ag—« for all Xy andyy.
where ¢=arctan()7), and the associated circle maj. ; The first property is shared by all scalar equations, and the
=f.(6,)=1(Qt,+ 6,)[mod 2], whered,, andf,, , are the  second one results from the fact that the right hand side of
phases of the periodic input at the firing timgsandt,,, ;. Eq. (4) is a strictly decreasing function afat fixedt. There-
Coombes and Bressldfff] raised the interesting possibil- fore, all the results presented below hold in fact for the more
ity for the LIFM to display several locked discharges with general case
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V— <
E—G(V,t). V() <S,,
V(thH=V, if V(t)=S, (5)

whereG is smoothG(V, -) is periodic, ands( - ,t) is strictly
decreasing and changes sign.

We denote by* (t) the uniqueT-periodic solution of Eq.
(4) defined asx*(t)=ur+ [ 1(s)e”""9'ds and to
which all other solutionsx(t) eventually converge. In the
same way, we introduce®(t), the “x nullcline,” as thex
values such thatix/dt=0, which is given byx°(t)=ur
+ 71 (t+ 6/Q)). Sincedx/dt is a decreasing function of we
havedx/dt>0 whenevernx(t)<x°(t), anddx/dt<0 when
x(t)>x°(t).

We show that the response of the LIFM to periodic stimu-
lation is entirely determined by the relative positionstbie
graphs of x* andx® with respect to the threshol,. To this
end, we determine how these affect the circle nfigp by

considering the phases of the first discharge of solutions of

Eq. (1) with initial conditionsV(t)=V, for tin [0,T].

We distinguish three parameter regions corresponding to
i-

three types of regimes and depending on the relative pos
tions ofx* andx® with respect to the threshoB,. These are
presented below, with Fig. 1 summarizing the main points
In all panels of this figure, the thick solid line i€ (t), the
dashed linex°(t), and the horizontal line at=1 the thresh-
old S,. The solid lines represent solution curves of E4),
denoted byx(t). The solutions/(t) of Eq. (1) coincide with

somex(t) between two successive discharges, then undergo \

a jump toV, upon reaching the thresholdt the discharge
time), and follow another solutiox(t) from that point on
until the next firing.

(@) Region 1x°(t)>S,, i.e., the dashed line is above the
threshold(top panel in Fig. L which is equivalent to

—§+,u+min{l(t)}>0. (6)
T t

Inequality (6) is equivalent to—Sy/7+ u+1(v)>0 for all

v e[0,T]. This in turn yields that-Vy/7+ pw+1(v)>0. The
fact thatx(t) increases monotonically as long as it is below
x9(t), together with(P1) applied to the previous inequality,
imply that (i) for any dischargé, there is a unique consecu-
tive discharge time,,,, and vice versa, andi) if t,>t]
thent, >t/ ., . In other words, the mafy, 6,— 6, is an
invertible orientation preserving circle map.

(b) Region 2 There are some andv such thatx®(u)
<Sy andx*(v)>S,, i.e., the dashed line is not above the
threshold and the thick solid line is not below (¢econd
panel from the top in Fig.)l which is equivalent to

-7 max[ ft I(s)e(ts)”ds}<— %+M<—min{l(t)}.
— t

t
(@)

We consider the implications of these inequalities succesfrom

sively. The fact that the thick solid line is not below the
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FIG. 1. All panels represent temporal wave forms of solutions
x(t) of Eq. (4). The thick solid line is thé@-periodic solutionx* (t),
the dashed line represents the “nullcling®(t), and the horizontal
line is the threshol&,. The panels are representative examples of
the dynamics in the different parameter regions 1, 2a, 2b, dede3
text for detail$. Abscissas of all panels are time and ordinates of all
panels are voltage. Both quantities are expressed in arbitrary units.
For all panels, the input igt) = A{sin(2at+ 6) +sin(4nt+26)}. Pa-
rameters Sy=1, Vy=0, =0 rad, A=1, and, top panel,u
=3, =1, second panel from top=1.5, Vo= —0.5, third panel
top, w=15, Vy=0.5 and bottom panel, x=0.5,
Vy=0.5, A=2.
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thresholdi.e., the left side inequality i7)] ensures that the PUP’ which strictly containsP and crosses the threshold

firing is sustained irrespective of the initial condition. In ypward at t/, with tp<t), ie., x(t),t,,9)=S and

other words, f_or angin[0}), ther(_a is some time’ >s such X(t,t,,S)<S for all te (t,,t;). No solution starting av

that the solution of Eq(4) safisfyingx(s) =Vq crosses the - can cross the threshold upward and for the first ime within

threshold ats’. This is due to the fact thak(t) tends 10 hjs interval ¢,,t,)=PUP’. Therefore, this interval does

x*(t), so that for some sufficiently large integér X(s  not belong to the range df

+KT)>S,. To finish our proof, we have to show that this interval
In the following we concentrate on the implications of the contains all points; andt}, depicted above. Sind® is con-

other condition, namely, that the dashed line is not above thgyined inP, we need only to establish thef<t! . This re-

threshold[i.e., the right side inequality iG7)]. To this end,  syits from(P2), i.e., the fact that the distance between any

we first consider the situation where the dashed line crossago solutions monotonically decreases with increasing time.

the threshold, but remains aboVg (second panel from the More precisely, we remark that(t,t,,S)—Xx(tf,t4, Vo)

top in Fig. ), and then we deal vyith the case when the:x(t(’),tp,S)—V0<S—Vo, becauset is in Q and conse-

Qashed line crosses bafly andV, (third panel from the top  quently inP so thatx(t},t,,S)<S. Using (P2 andt)>t,

in Fig. 1). . o we obtain the result that(t),t,,S) —x(t} ,ty,Vo) <S—Vo.
Region 2a Whenx™>V,, (P1) implies that the mafl,  gjnce, by definition, x(t),t,,S)=S, we deduce that

—t,41 IS monotonic, or equivalently th_aftc is _onentatlo_n X(t! ) Vo) >V,. This leads td’/<t’ , because by definition

preserving. In this respect, the situation is similar to region 1X(spt”o\,/ )<V, for all se (t t”o P’

However, in contrast with that regiof, is no longer invert- (,CS) 'Rggion %x*(t)<So ioé Otﬁe thick solid line is below

ible. This is because the solutions cannot reach the thresho{ reshold(lowest panel of F.i ’ 1 which is equivalent to

from below at times such thaf(t)<S, (e.g., the intervaB P 9: q

in the second panel from the top in Fig. In other words, .

such times do not belong to the rangefof - §+M+ T max f I(s)e"=9'dsl<0. (8
In fact, to be more accurate, definint,tg,S) as the T t —

solution of Eq.(4) tangent to the threshold at the lower end

tg of B, it is the whole intervaB-C wherein this solution  AJl solutions of Eq.(4) eventually become completely sub-
remains belows that does not belong to the rangefpf.e.,  threshold(e.g., the uppermost solid line in the lowest panel
starting fromV,, it is not possible to cross the threshold from of Fig. 1). Let us consider one such solution, denoted by
below and for the first time in this interval. xu (1), that is above threshold §f0,T], and let us denote by
Region 2b Whenx® crossesV, then—Vo/7+u+1(v)  t*>T the last time it crosses the threshold. Eort*, this
<0 forv in some intervale.g.,Q in the third panel from the  solution is subthreshold, i.exy(t)<S,. We claim that for
top in Fig. 3. Then neither(P1) holds nor is the mag  the LIFM all firings initiated within[0,T] necessarily stop
monotonic. To see this point, we consider an inter@al peforet*. Indeed, let us assume that there is a firing at some
whereinx? is belowV,. We remark that there are two solu- initial sin [0,T]; then we need to consider the solutig(it)
tion curves of Eq(4) that are tangent tW, at each end 0®  going throughV,, at this time, i.e.V(s) =V,. We show that
(Vo=0.5 in the figurg. A solutionx(t) of Eq. (4) passing  v(t)<x,(t) for all t=s, which in turn implies thatv(t)
throughVj to the left of Q, say att, and enclosed between <s; for all t>t*, meaning that no firing can take place
these two curves, crosses the horizoMglline twice more,  aftert*.
once from above withi®, say atty, and once from below to To see this point, let us consider the solutiqt) of Eq.
the right of Q, say atty, with tg>t;,>t,. Since all these (4) satisfying x(s)=V,. Then x(t)=V(t) for t in [s,s’),
points are on the same solution curx@), we havef(tg) where s’ is the first threshold crossing of (if it exists,
=f(tg) ="f(tg), so that the mapis not one to one. Further- otherwise s’==). Since Vy<Sy<xy(s), we have x(t)
more, fort andt’ in Q, with t>t’, we havef(t)<f(t’), <xm(t) for all t=s. Therefore,x(t) [and consequently
which means thaf is locally decreasing in this interval, V(t)] can cross the threshold only at a tirme>s such that
and hence its associated circle mgpis not orientation xy(s')>S,. After this crossingV(t) no longer coincides
preserving. with x(t), but rather with the solutior’(t) of Eq. (4) satis-
Nevertheless, we show thatestricted to its range is an fying x'(s")=V,. Hence this solution also satisfies(t)
increasing map, and its associated restricted circle fpap  <x(t) for all t>s’. This finishes the proof, as it implies
orientation preserving. To this end, we need only establislthat any solution of Eq(l) going throughV, at some times
that intervals wherd is not one to one—which include in- in [0,T] satisfiesV(t) <xy(t) for all t>s.
tervals such a@—are not within the range df This is done These three regions exhaust all possibilities for the peri-
in the following two paragraphs. odically forced LIFM. When the forcing is sinusoidal, they
We first remark thatQ wherein—Vy/7+ u+1(v)<0 is  coincide with the regions described [i8]. Our interest was
necessarily strictly included in a larger intervBl where in the possibility for the LIFM to display locked firing with
—S/7+ u+1(v) <0 becausé&s>V,. At the lower endt, of  different rotation numbers for given parameter sets. Clearly,
P, there is a solution curve of E@4) that is tangent to the this is impossible in the third region, because for such a
thresholdS i.e., t—x(t,t,,S) has a local maximum at  selection of parameters the LIFM cannot sustain maintained
=t,. This solution curve remains belo®over an interval firing, and this is independent of the initial conditions. In the
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FIG. 3. Circle mapsp="f(6) (left pane) and ¢=1f3(6) (right
pane), associated to the inpuit(t)=A sin(2#t+ 6)+0.1A sin(nt

+0.560). Abscissas and ordinates in both panels are in radians. Pa-
period time rametersu=2, 7=1, A=2.5.

1(t)

FIG. 2. Example of multistability. Top two graphs are represen-i.onis or other models of forced neurofesg., [8]). This

tations of two possible spike trains evokeq by_the i_”p“t sig stems from the fact that the circle mdp can always be
represented in the bottom panel. The vertical lines in the two uppel[estricted to an orientation preserving map, even though it
panels are schematic representations of the firings of the unit. Bot- ’

tom graph is a schematic representation of the input sibftalin m?y dlstﬁlay d'?.C(.)tntmu't'eS.' Ou:c tphroof loft.thls fa:ccghdlcli_lgc':;

arbitrary units. Abscissas of all graphs are tiaebitrary units. rely qn € exp 'C'. e.xpressmn of the solu |on§ ot the .
equations; rather it highlighted the two properties of this sys-

tem that are essential in the results. Indeed, our analysis re-

two other regions, the discharge phase nfiggan be re-
. . . . . . ied only on the facts thdtl) Eq. (4) preserves the ordéP1)
stricted to an orientation preserving circle map, which can béand () it is contractive(P2. This indicates that the results

either invertible or not. Direct extension of standard resultsremain valid for any threshold system satisfying these two
on circle mapg$5] reveals that in both cases, i.e., whether the y y 9

map is invertible or not, the rotation number is well defined conditions. Furthermore, conditiofP1) holds for all one-

and is independent of the initial condition. Furthermore, thedlmensmnal systems, and we us@d) only in region 2b, so

s o . : ._that our analyses of regions 1, 2a, and 3 are valid in fact for
map has a periodic orbit if and only if the rotation number ISarbitrary one-dimensional threshold systems, whether they

rational, in which case all periodic orbits have the same peé\re contractive or not. These observations stress the general-
riod [6]. In other words, the geometrical properties of the ' 9

. L . .. ity of our approach, which should also hold for variants of
map f. preclude the coexistence of periodic solutions W|ththe LIEM with different governing equations.

ggfigriir;)tugtggfer;tr;lémbers, irespective of the class of peri- Finally, we illustrate this through a mathematical model
The shape of the map also puts severe constaints on pog! % SO ARl PN BORTCCh TR
sible dynamics at irrational rotation numbers and also on th%eurons the stimulaﬁion consists in modulatin the len t?] of
size of parameter sets in which these oddir]. When the muscle f1ibers Such mechanical inputs are trar?sformedginto a
rotation number is irrational in region 1 whefg is invert- . : P
: R, . . synaptic current at the level of the neuron membrane thanks
ible, one expects quasiperiodic firing, with the orbits of any o . i
. . . to mechanosensitive channels whose opening probability de-
point densely covering the whole intervigd,27]. In con- ) ) ;
. ; 2 - - ends on their extension. The standard model for this mecha-
trast, in region 2, the firing is aperiodic and the firing phaseé) . o . . .
notransduction process consists in a linear spring with con-
form a measure zero Cantor set. The latter case can oceyr . ; L . -
Stantk; in parallel with a dashpot with viscosiB, which are
only on a measure zero set of parameters. : : . : . :
both in series with a nonlinear spring with const&nt The

Finally, while our analysis proves that no matter Whato ening of the channels is a function of the extension of this
classes of periodic forcing are used, the rotation number doe¥ 9

not depend on the initial condition, this does not imply thatSeCOnOI Spring. L .
the periodically forced LIFM does not display multiple Denotmg bye the' mechanical input anel, the extension
stable periodic solutions. Indeed these are possible as long 8& the nonlinear spring, we hay{e]

they have the same rotation number. A schematic example is de, de

shown in Fig. 2, where there are two distinct periodic firings B——=—kie,— ko) "' +kie+ B, 9
with three discharges per input cycle. An example con- dt dt

structed with the LIFM and its corresponding circle map and here the integen reflects the nonlinearity of the sprin
its third iterate confirm that such a situation can indeed occul.. Integ ! "y pring.

(Fig. 3), i.e., the third iterate intersects the diagonal six timesAn extensione, opens mechanosensitive channels with a

at points with slope smaller than 1, indicating the presence o‘?mbab'“ty
two stable period 3 orbits. 1

In conclusion, our investigation gives a complete descrip- Pol(€s) = ’ (10)
tion of the responses of the LIFM to any arbitrary periodic 1+ kbexp[—(s/m)kze’z‘”]

forcing. It also shows that, no matter what class of periodic
forcing is used, the LIFM cannot display some of the com-where the parameteks, s, andm are positive constants. In
plex responses, such as chaotic ones, observed in expetitis way, the synaptic current impinging upon the neuron
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membrane can be evaluatedigs g;Py(€5) (Vs— V), where

PHYSICAL REVIEW E63 041907

Equation(11) is more complex than the standard LIF Eg.

gs and V4 are the maximal synaptic conductance and thg1l) because time dependent terms appear not only in the
synaptic reversal potential. Combining this result with theadditive termh but also in the multiplicative oné(t). Fur-

LIF gives the following model for stretch receptor neurons:

vV 1 .
_ ;+M+E|S(t) if V(H)<Sy

av
T 1 (11
- ;+f(t) V+u+h(t) if V(1)<S,,
V(t")=Vy if V(1)=Sy, (12
where C is the membrane capacitance,f(t)

—gPol &(1)]/C>0, andh(t) =f (1) Vs.

thermore, given that E9) is nonlinear, it is not in general
possible to derive an analytical expression égreven when

€ is a sine function. Thus an analytical approach may be used
to study the above model only in some specific cases. How-
ever, given that Eq(11) satisfies propertie§P1) and (P2),

the results presented in this work can be used to classify the
responses of this model to periodic length modulation.

The author would like to thank T. Shimokawa for discuss-
ing these results.
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