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Periodically forced leaky integrate-and-fire model
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The discharge pattern of periodically forced leaky integrate-and-fire models is studied. While previous
analyses have been mainly concerned with the response of this model to sinusoidal stimulation, our results hold
for arbitrary periodic inputs. It is shown that, for any periodic input, the map representing the relation between
input phases at consecutive discharge times can be restricted to a piecewise continuous, orientation preserving
circle map. This implies that~i! the rotation number is well defined and independent of the initial condition,
and~ii ! in the same way as for sinusoidal forcing, other forms of periodic stimuli can evoke only one of four
types of response, namely, phase locking, quasiperiodic discharges, nonchaotic aperiodic firing, and termina-
tion of the discharge after a finite number of firings.
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The sinusoidally forced leaky integrate-and-fire mod
~LIFM ! has been the topic of numerous investigations a
means for understanding the behavior of excitable and p
maker cells@1–4#. The temporal evolution of the membran
potential of this model is governed by

dV

dt
52

V

t
1m1I ~ t ! if V~ t !,S0 ,

V~ t1!5V0 if V~ t !5S0 , ~1!

whereV(t) is the membrane potential,S0 the constant firing
threshold,V0 (,S0) the postdischarge resetting potential,t
the membrane time constant,mt the resting potential, and
I (t) the periodic input signal with periodT52p/V. Without
loss of generality we assume that*0

TI (t)dt50. The LIFM
generates an action potential whenV exceedsS0, which is
described by an impulse. After that,V is immediately reset to
V0. The process is repeated subsequently.

An important milestone in the analysis of the sinusoida
forced LIFM @i.e., I (t)5A sin(Vt1u)] was set by Keener
et al. @3#. These authors performed a careful study of
response to this specific input and showed that the LIFM
display one of four behaviors, and only these. That is,
model fires only transiently and remains quiescent hen
forth, phase locks to the input, displays quasiperiodic d
charges, or generates a nonchaotic irregular firing, with
last form of response occurring only for a measure z
range of forcing amplitudes and periods. In their analy
they utilized the firing map describing the relation betwe
consecutive firing timestn°tn115 f (tn) @1#

f ~ tn!5F21@F~ tn!1Setn /t#, ~2!

F~ t !5et/tFmt2S1
At

A11~Vt!2
sin~Vt1u2f!G , ~3!

where f5arctan(Vt), and the associated circle mapun11
5 f c(un)5 f (Vtn1un)@mod 2p#, whereun andun11 are the
phases of the periodic input at the firing timestn and tn11.

Coombes and Bressloff@4# raised the interesting possibi
ity for the LIFM to display several locked discharges wi
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different rotation numbers for given parameter values~the
rotation number is defined as the average number of firi
per input cycle!. While this is not possible whenI (t)
5A sin(Vt1u) @3#, the issue remains unexplored for oth
classes of periodic forcing, in other words, there may ex
one or several periodic inputs that elicit firings with differe
rotation numbers.

The main purpose of the present work is to investig
this issue. We show that for arbitrary periodic inputs t
rotation number does not depend on the initial condition.
this end, we use an approach that is different from that of@3#
in that, instead of using the explicit analytical expression
the solutions of Eq.~1!, we focus on the geometrical prop
erties of this equation. This enables us to generalize
analysis of sinusoidally forced LIF’s not only to arbitrar
periodic inputs, but also to a wider class of systems.
illustration of this latter point in a model for a mechanor
ceptor neuron is given at the end of this paper.

Our key argument hinges upon establishing that, for a
arbitrary periodic forcingI, the circle mapf c can always be
restricted in such a way that it is piecewise continuous a
orientation preserving. This point results from two propert
of the following equation, which corresponds to Eq.~1! with-
out resetting:

dx

dt
52

x

t
1m1I ~ t !. ~4!

These two properties are~P1! if for s.s8 and somex0, we
have 2x0 /t1m1I (v).0 for all v in @s,s8#, then
x(t,s,x0),x(t,s8,x0) for all t, where x(t,s,x0) represents
the value at timet of the solution of Eq.~4! going throughx0
at time s, i.e., t→x(t,s,x0) satisfies Eq.~4! with x(s,s,x0)
5x0; ~P2! the differencex(t,s,x0)2x(t,s,y0) tends mono-
tonically to zero ast→` for all x0 andy0.

The first property is shared by all scalar equations, and
second one results from the fact that the right hand side
Eq. ~4! is a strictly decreasing function ofx at fixedt. There-
fore, all the results presented below hold in fact for the m
general case
©2001 The American Physical Society07-1
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dV

dt
5G~V,t !, V~ t !<S0 ,

V~ t1!5V0 if V~ t !5S0 , ~5!

whereG is smooth,G(V,•) is periodic, andG(•,t) is strictly
decreasing and changes sign.

We denote byx* (t) the uniqueT-periodic solution of Eq.
~4! defined as x* (t)5mt1*2`

t I (s)e2(t2s)/tds, and to
which all other solutionsx(t) eventually converge. In the
same way, we introducex0(t), the ‘‘x nullcline,’’ as thex
values such thatdx/dt50, which is given byx0(t)5mt
1tI (t1u/V). Sincedx/dt is a decreasing function ofx, we
havedx/dt.0 wheneverx(t),x0(t), and dx/dt,0 when
x(t).x0(t).

We show that the response of the LIFM to periodic stim
lation is entirely determined by the relative positions of~the
graphs of! x* andx0 with respect to the thresholdS0. To this
end, we determine how these affect the circle mapf c , by
considering the phases of the first discharge of solution
Eq. ~1! with initial conditionsV(t)5V0 for t in @0,T#.

We distinguish three parameter regions correspondin
three types of regimes and depending on the relative p
tions ofx* andx0 with respect to the thresholdS0. These are
presented below, with Fig. 1 summarizing the main poin
In all panels of this figure, the thick solid line isx* (t), the
dashed linex0(t), and the horizontal line atx51 the thresh-
old S0. The solid lines represent solution curves of Eq.~4!,
denoted byx(t). The solutionsV(t) of Eq. ~1! coincide with
somex(t) between two successive discharges, then unde
a jump toV0 upon reaching the threshold~at the discharge
time!, and follow another solutionx(t) from that point on
until the next firing.

(a) Region 1. x0(t).S0, i.e., the dashed line is above th
threshold~top panel in Fig. 1!, which is equivalent to

2
S0

t
1m1min

t
$I ~ t !%.0. ~6!

Inequality ~6! is equivalent to2S0 /t1m1I (v).0 for all
vP@0,T#. This in turn yields that2V0 /t1m1I (v).0. The
fact thatx(t) increases monotonically as long as it is belo
x0(t), together with~P1! applied to the previous inequality
imply that ~i! for any dischargetn there is a unique consecu
tive discharge timetn11, and vice versa, and~ii ! if tn.tn8
thentn11.tn118 . In other words, the mapf c un→un11 is an
invertible orientation preserving circle map.

(b) Region 2. There are someu and v such thatx0(u)
,S0 and x* (v).S0, i.e., the dashed line is not above th
threshold and the thick solid line is not below it~second
panel from the top in Fig. 1!, which is equivalent to

2t max
t

H E
2`

t

I ~s!e2(t2s)/tdsJ ,2
S0

t
1m,2min

t
$I ~ t !%.

~7!

We consider the implications of these inequalities succ
sively. The fact that the thick solid line is not below th
04190
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FIG. 1. All panels represent temporal wave forms of solutio
x(t) of Eq. ~4!. The thick solid line is theT-periodic solutionx* (t),
the dashed line represents the ‘‘nullcline’’x0(t), and the horizontal
line is the thresholdS0. The panels are representative examples
the dynamics in the different parameter regions 1, 2a, 2b, and 3~see
text for details!. Abscissas of all panels are time and ordinates of
panels are voltage. Both quantities are expressed in arbitrary u
For all panels, the input isI (t)5A$sin(2pt1u)1sin(4pt12u)%. Pa-
rameters S051, V050, u50 rad, A51, and, top panel,m
53, t51, second panel from topm51.5, V0520.5, third panel
from top, m51.5, V050.5, and bottom panel, m50.5,
V050.5, A52.
7-2
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PERIODICALLY FORCED LEAKY INTEGRATE-AND- . . . PHYSICAL REVIEW E63 041907
threshold@i.e., the left side inequality in~7!# ensures that the
firing is sustained irrespective of the initial condition.
other words, for anys in @0,t), there is some times8.s such
that the solution of Eq.~4! satisfyingx(s)5V0 crosses the
threshold ats8. This is due to the fact thatx(t) tends to
x* (t), so that for some sufficiently large integerk x(s
1kT).S0.

In the following we concentrate on the implications of t
other condition, namely, that the dashed line is not above
threshold@i.e., the right side inequality in~7!#. To this end,
we first consider the situation where the dashed line cro
the threshold, but remains aboveV0 ~second panel from the
top in Fig. 1!, and then we deal with the case when t
dashed line crosses bothS0 andV0 ~third panel from the top
in Fig. 1!.

Region 2a. When x0.V0, ~P1! implies that the maptn
→tn11 is monotonic, or equivalently thatf c is orientation
preserving. In this respect, the situation is similar to region
However, in contrast with that region,f c is no longer invert-
ible. This is because the solutions cannot reach the thres
from below at times such thatx0(t),S0 ~e.g., the intervalB
in the second panel from the top in Fig. 1!. In other words,
such times do not belong to the range off.

In fact, to be more accurate, definingx(t ,tB ,S) as the
solution of Eq.~4! tangent to the threshold at the lower e
tB of B, it is the whole intervalB-C wherein this solution
remains belowS that does not belong to the range off, i.e.,
starting fromV0, it is not possible to cross the threshold fro
below and for the first time in this interval.

Region 2b. Whenx0 crossesV0, then2V0 /t1m1I (v)
,0 for v in some interval~e.g.,Q in the third panel from the
top in Fig. 1!. Then neither~P1! holds nor is the mapf
monotonic. To see this point, we consider an intervalQ
whereinx0 is belowV0. We remark that there are two solu
tion curves of Eq.~4! that are tangent toV0 at each end ofQ
(V050.5 in the figure!. A solution x(t) of Eq. ~4! passing
throughV0 to the left ofQ, say att0 and enclosed betwee
these two curves, crosses the horizontalV0 line twice more,
once from above withinQ, say att08 , and once from below to
the right of Q, say at t09 , with t09.t08.t0. Since all these
points are on the same solution curvex(t), we havef (t0)
5 f (t08)5 f (t09), so that the mapf is not one to one. Further
more, for t and t8 in Q, with t.t8, we havef (t), f (t8),
which means thatf is locally decreasing in this interva
and hence its associated circle mapf c is not orientation
preserving.

Nevertheless, we show thatf restricted to its range is a
increasing map, and its associated restricted circle mapf c is
orientation preserving. To this end, we need only estab
that intervals wheref is not one to one—which include in
tervals such asQ—are not within the range off. This is done
in the following two paragraphs.

We first remark thatQ wherein2V0 /t1m1I (v),0 is
necessarily strictly included in a larger intervalP where
2S/t1m1I (v),0 becauseS.V0. At the lower endtp of
P, there is a solution curve of Eq.~4! that is tangent to the
thresholdS, i.e., t→x(t,tp ,S) has a local maximum att
5tp . This solution curve remains belowS over an interval
04190
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PøP8 which strictly containsP and crosses the thresho
upward at tp8 , with tp,tp8 , i.e., x(tp8 ,tp ,S)5S and
x(t,tp ,S),S for all tP(tp ,tp8). No solution starting atV0

can cross the threshold upward and for the first time wit
this interval (tp ,tp8)5PøP8. Therefore, this interval doe
not belong to the range off.

To finish our proof, we have to show that this interv
contains all pointst08 and t09 depicted above. SinceQ is con-
tained inP, we need only to establish thatt09,tp8 . This re-
sults from ~P2!, i.e., the fact that the distance between a
two solutions monotonically decreases with increasing tim
More precisely, we remark thatx(t08 ,tp ,S)2x(t08 ,t08 ,V0)
5x(t08 ,tp ,S)2V0,S2V0, becauset08 is in Q and conse-
quently inP so thatx(t08 ,tp ,S),S. Using ~P2! and tp8.t08 ,
we obtain the result thatx(tp8 ,tp ,S)2x(tp8 ,t08 ,V0),S2V0.
Since, by definition, x(tp8 ,tp ,S)5S, we deduce that
x(tp8 ,t08 ,V0).V0. This leads tot09,tp8 , because by definition
x(s,t08 ,V0),V0 for all sP(t08 ,t09).

(c) Region 3. x* (t),S0, i.e., the thick solid line is below
threshold~lowest panel of Fig. 1!, which is equivalent to

2
S0

t
1m1t max

t
H E

2`

t

I ~s!e2(t2s)/tdsJ ,0. ~8!

All solutions of Eq.~4! eventually become completely sub
threshold~e.g., the uppermost solid line in the lowest pan
of Fig. 1!. Let us consider one such solution, denoted
xM(t), that is above threshold in@0,T#, and let us denote by
t* .T the last time it crosses the threshold. Fort.t* , this
solution is subthreshold, i.e.,xM(t),S0. We claim that for
the LIFM all firings initiated within@0,T# necessarily stop
beforet* . Indeed, let us assume that there is a firing at so
initial s in @0,T#; then we need to consider the solutionV(t)
going throughV0 at this time, i.e.,V(s)5V0. We show that
V(t),xM(t) for all t>s, which in turn implies thatV(t)
,S0 for all t.t* , meaning that no firing can take plac
after t* .

To see this point, let us consider the solutionx(t) of Eq.
~4! satisfying x(s)5V0. Then x(t)5V(t) for t in @s,s8),
where s8 is the first threshold crossing ofx ~if it exists,
otherwise s85`). Since V0,S0,xM(s), we have x(t)
,xM(t) for all t>s. Therefore, x(t) @and consequently
V(t)] can cross the threshold only at a times8.s such that
xM(s8).S0. After this crossingV(t) no longer coincides
with x(t), but rather with the solutionx8(t) of Eq. ~4! satis-
fying x8(s8)5V0. Hence this solution also satisfiesx8(t)
,xM(t) for all t.s8. This finishes the proof, as it implie
that any solution of Eq.~1! going throughV0 at some times
in @0,T# satisfiesV(t),xM(t) for all t.s.

These three regions exhaust all possibilities for the p
odically forced LIFM. When the forcing is sinusoidal, the
coincide with the regions described in@3#. Our interest was
in the possibility for the LIFM to display locked firing with
different rotation numbers for given parameter sets. Clea
this is impossible in the third region, because for such
selection of parameters the LIFM cannot sustain maintai
firing, and this is independent of the initial conditions. In t
7-3
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K. PAKDAMAN PHYSICAL REVIEW E 63 041907
two other regions, the discharge phase mapf c can be re-
stricted to an orientation preserving circle map, which can
either invertible or not. Direct extension of standard resu
on circle maps@5# reveals that in both cases, i.e., whether
map is invertible or not, the rotation number is well define
and is independent of the initial condition. Furthermore,
map has a periodic orbit if and only if the rotation number
rational, in which case all periodic orbits have the same
riod @6#. In other words, the geometrical properties of t
map f c preclude the coexistence of periodic solutions w
different rotation numbers, irrespective of the class of pe
odic inputs selected.

The shape of the map also puts severe constraints on
sible dynamics at irrational rotation numbers and also on
size of parameter sets in which these occur@6,7#. When the
rotation number is irrational in region 1 wheref c is invert-
ible, one expects quasiperiodic firing, with the orbits of a
point densely covering the whole interval@0,2p#. In con-
trast, in region 2, the firing is aperiodic and the firing pha
form a measure zero Cantor set. The latter case can o
only on a measure zero set of parameters.

Finally, while our analysis proves that no matter wh
classes of periodic forcing are used, the rotation number d
not depend on the initial condition, this does not imply th
the periodically forced LIFM does not display multip
stable periodic solutions. Indeed these are possible as lon
they have the same rotation number. A schematic examp
shown in Fig. 2, where there are two distinct periodic firin
with three discharges per input cycle. An example co
structed with the LIFM and its corresponding circle map a
its third iterate confirm that such a situation can indeed oc
~Fig. 3!, i.e., the third iterate intersects the diagonal six tim
at points with slope smaller than 1, indicating the presenc
two stable period 3 orbits.

In conclusion, our investigation gives a complete desc
tion of the responses of the LIFM to any arbitrary period
forcing. It also shows that, no matter what class of perio
forcing is used, the LIFM cannot display some of the co
plex responses, such as chaotic ones, observed in ex

FIG. 2. Example of multistability. Top two graphs are represe
tations of two possible spike trains evoked by the input signalI (t)
represented in the bottom panel. The vertical lines in the two up
panels are schematic representations of the firings of the unit.
tom graph is a schematic representation of the input signalI (t) in
arbitrary units. Abscissas of all graphs are time~arbitrary units!.
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ments or other models of forced neurons~e.g., @8#!. This
stems from the fact that the circle mapf c can always be
restricted to an orientation preserving map, even thoug
may display discontinuities. Our proof of this fact did n
rely on the explicit expression of the solutions of the LIF
equations; rather it highlighted the two properties of this s
tem that are essential in the results. Indeed, our analysis
lied only on the facts that~1! Eq. ~4! preserves the order~P1!
and ~2! it is contractive~P2!. This indicates that the result
remain valid for any threshold system satisfying these t
conditions. Furthermore, condition~P1! holds for all one-
dimensional systems, and we used~P2! only in region 2b, so
that our analyses of regions 1, 2a, and 3 are valid in fact
arbitrary one-dimensional threshold systems, whether t
are contractive or not. These observations stress the gen
ity of our approach, which should also hold for variants
the LIFM with different governing equations.

Finally, we illustrate this through a mathematical mod
for a stretch receptor neuron proposed in@9#. The following
is a concise description of this model. In stretch recep
neurons, the stimulation consists in modulating the length
muscle fibers. Such mechanical inputs are transformed in
synaptic current at the level of the neuron membrane tha
to mechanosensitive channels whose opening probability
pends on their extension. The standard model for this mec
notransduction process consists in a linear spring with c
stantk1 in parallel with a dashpot with viscosityB, which are
both in series with a nonlinear spring with constantk2. The
opening of the channels is a function of the extension of t
second spring.

Denoting bye the mechanical input ande2 the extension
of the nonlinear spring, we have@9#

B
de2

dt
52k1e22k2e2

n111k1e1B
de

dt
, ~9!

where the integern reflects the nonlinearity of the spring
An extensione2 opens mechanosensitive channels with
probability

P0~e2!5
1

11kbexp@2~s/m!k2e2
n11#

, ~10!

where the parameterskb , s, andm are positive constants. In
this way, the synaptic current impinging upon the neur

-

er
t-

FIG. 3. Circle mapsw5 f (u) ~left panel! and w5 f 3(u) ~right
panel!, associated to the inputI (t)5A sin(2pt1u)10.1A sin(pt
10.5u). Abscissas and ordinates in both panels are in radians.
rameters:m52, t51, A52.5.
7-4
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membrane can be evaluated asI s5gsP0(e2)(Vs2V), where
gs and Vs are the maximal synaptic conductance and
synaptic reversal potential. Combining this result with t
LIF gives the following model for stretch receptor neuron

dV

dt
5H 2

V

t
1m1

1

C
I s~ t ! if V~ t !,S0

2F1

t
1 f ~ t !GV1m1h~ t ! if V~ t !,S0 ,

~11!

V~ t1!5V0 if V~ t !5S0 , ~12!

where C is the membrane capacitance,f (t)
5gsP0@e2(t)#/C.0, andh(t)5 f (t)Vs .
ul

s.

04190
e
Equation~11! is more complex than the standard LIF E

~1! because time dependent terms appear not only in
additive termh but also in the multiplicative onef (t). Fur-
thermore, given that Eq.~9! is nonlinear, it is not in genera
possible to derive an analytical expression fore2, even when
e is a sine function. Thus an analytical approach may be u
to study the above model only in some specific cases. H
ever, given that Eq.~11! satisfies properties~P1! and ~P2!,
the results presented in this work can be used to classify
responses of this model to periodic length modulation.

The author would like to thank T. Shimokawa for discus
ing these results.
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